JAEA-IAEA Workshop on Adv. S/G Tech. for NFC

Current Status of Safeguards R&D for Advanced Fuel Cycle at KAERI

Nov. 13, 2007

Ho-Dong Kim KAERI

Outline

- Introduction of Future Fuel Cycle Options at KAERI
- History of Safeguards R&D at KAERI
- DUPIC Safeguards System
- ACPF Safeguards System
- Other Safeguards R&D for Pyroprocess at KAERI
- International Cooperation
- Summary

Introduction of Future Fuel Cycle Options at KAERI

Spent Fuel Management Options

Current Conclusion

Korean, Innovative, Environmentally Friendly, and Proliferation Resistant System for the 21st C (KIEP-21)

DUPIC Fuel Cycle Concept

DUPIC: Direct Use of Spent PWR Fuel In CANDU Reactors (Termed by KAERI/AECL/USA Joint Research in 1991)

- Benefits
 - Getting rid of spent LWR fuel
 - Reducing the amount of SF generation from CANDU reactors by a factor of 2
 - Significant (~25%) reduction in natural uranium requirement

Technical Challenges

- Development of remote fuel fabrication technology
- Verification of performance and safety of DUPIC fuel
- Development of remote fuel handling method in CANDU plant

DUPIC Technology Development

- Objective
 - Development of a proliferation-resistant fuel cycle technology for the spent PWR fuel management
 - Demonstration of the DUPIC fuel cycle technology in terms of the remote fabricability, fuel performance, compatibility, safeguardability and economic feasibility
- On-Going and Future R&D Activities
 - 1st stage('92~'01) : Experimental Verification of DUPIC Fuel Development Technology
 - 2nd stage('02 ~'06) : Improvement of Key Technologies for DUPIC Fuel Fabrication
 - ▶ 3rd Stage('07~'12) : Development of DUPIC Fuel Bundle Manufacturing Technology

DUPIC Fuel Development Facility (DFDF)

A Long-term Plan for Development of Pyroprocess

- * ~ 2009: Lab. Scale [1 t HM/yr]: Innovative Technology Development [continuous type process and waste minimization]
- * ~ 2011: Eng. scale MOCK-UP [10 t HM/yr]
- * ~ 2016: Establishment of ESPF [10 t HM/yr]
- * ~ 2025: Establishment of Integrated Pyroprocess Facility [100 t HM/yr]

A Flow Diagram of Pyroprocess being Developed by KAERI

Introduction of ACP (<u>A</u>dvanced spent fuel <u>C</u>onditioning <u>P</u>rocess)

- What are the final products ?
 - Metal (U+TRU+ some FPs)

What is the final destination?

- Permanent disposal
 - Reduction of spent fuel heat power, volume and radioactivity
- Recycling to GEN IV reactors
 - Direct link with TRU burning in SFR

10 Year History of ACP Development

Lab-scale ACPF

20 kgHM/batch Demonstration Process

- **•** Remote Operation and Maintenance
- Interface Systems between Process Steps
- Performance Evaluation of Process Systems

Inside Process Hot Cell

History of Safeguards R&D at KAERI

KAERI Safeguards History

DUPIC Safeguards

DUPIC S/G System Installation

- Phase I : Feasibility Study
 - Optimum Fabrication Process
 - Safeguardability
- Phase II : DUPIC Fuel Design & Fabrication
 - Safeguards Technology Development
 - **Safeguards Implementation**
- Phase III : Demo. of Fuel Performance
 - Upgrade of Safeguards System

DUPIC Material Measurement

DSNC

- DUPIC Safeguards Neutron Counter
- Well-type neutron coincidence counter
- All types of DUPIC process material
- Remotely measurable in hot cell
- SNM Analysis
 - Pu, U contents from measured Cm-244 contents

DUPIC Intelligent Surveillance System

DISS User Interface

ACPF Safeguards System

ACPF

- Input material of the hot cell is spent fuel rodcuts
- Anticipated throughput: 100 kgU of PWR SF to be processed in several batches

ACPF Safeguards System

□ cooperation with LANL and IAEA

Safeguards Implementation

History of IAEA Safeguards in ACPF

- Submission of DIQ
 - ✓ Preliminary DIQ : Dec. 8, 2004
 - ✓ Completed DIQ : Mar. 23, 2005
 - ✓ Revised DIQ : Jul. 10, 2006 (2nd Revision)

IAEA Facility Attachment

- The PIV/DIV and ES were performed on Aug. 1, 2006.
- A working group meeting took place in Vienna in June 2006 to discuss the implementation of safeguards at ACPF and the FA contents.
- The FA has been completed and is in force as of Mar. 23, 2007.
- ACPF is classified as an "other" R&D facility (H6)
- The facility constitutes one Material balance Area (Identification Code : KOV1), 4 material flow KMPs and 5 physical inventory KMPs.

Principle of Nuclear Material Accounting by Neutron Measurement

Neutron Counter (ASNC)

- ACP Safeguards Neutron Counter (ASNC) installed in 2005
 - Passive neutron coincidence counter
 - Gamma-ray shield: Lead 6 cm (Inner/Outer)
 - ► Neutron detection efficiency: 21 %
 - ► Sample cavity: Φ21 cm × 33 cm
 - Horizontal geometry
 - Cold tests with Cf-252 sources were completed
 - Full remote maintenance capabilities
 - Hot tests for verification of the ASNC with PWR spent fuel rod-cuts were performed

ASNC Installation

Front view of ASNC (Normal operation)

LEMO Connectors

Front view of ASNC - Open hood (Maintenance)

ASNC installed in the ACPF hot cell

Performance of ASNC

Confirmed a flat spatial response (σ < 2%) and reasonable detection efficiency (ε = 21%) of the ASNC (A test with ²⁵²Cf neutron source)

Gain matching curves for 4 groups

Y-axis efficiency profile

ASNC Hot Test

- □ The hot test verification of ASNC using the spent fuel rod-cuts was performed with cooperation between KAERI and LANL in Aug., 2007.
- □ IAEA expert participated in the test as an observer.
- □ Test objectives
 - Calibration of the ASNC for the real hot materials including Cm-244
 - Gamma pileup check and HV setting
- Spent Fuel Specifications
 - Total 8 rod-cut samples, 2 years cooling
 - PWR SF 3 rod-cuts 1 cm long (52 GWD/MTU)
 - PWR SF 5 rod-cuts 25 cm long from J502 Assembly C16 rod (60 GWD/MTU)

Drs. Menlove and Belian at the ACPF **KAERI**

Spent fuel rod cuts stored in a PE cask ASNC hot test with spent fuel rod cuts

Spent Fuel Rod-cuts Spec.

Burnup History of J502 Assembly, Young-Kwang Unit 4

Young-Kwang Unit 4	Rod Array 16x16	EFPD (Days)	Assembly Cycle Burnup (GWD/MTU)	Avg. Burnup of J502 Assembly	47.789	GWD/MTU	
	Cycle 6	469	19.799	Enrichment	4.49	w/o	
Irradiated History	Cycle 7 490		20.628	.628 Cladding			
	Cycle 8	465	7.362	U/rod	1.831	kg	
Disc	harged Date		2005.08.25	Rod	J502-R13	J502-C16	
Cooling Time	at 2007.08.04	(Days)	Avg. Burnup (GWD/MTU)	48.973	55.362		

ORIGEN-ARP and MCNPX Simulation Results

ld	Average Burnup (GWD/M TU)	Length of Rod- Cuts	Expected Doubles Rate (#/s)	Expected Singles Rate (#/s)	Cm-244 SF Neutron Contributi on (%)	Total Fissile Content (w/o)	U- 235/Cm Ratio	Pu/Cm Ratio	Activity (Ci)	α	Dose Rate (R/h) @ He-3 with 6cm Lead	Cm-244 (mg)	U (g)	U-235 (g)	Pu (g)
C16-7	59.907	25 cm	8,486	65,427	97%	1.44%	25	52	264	0.013	1.38	26.53	111.71	0.72	1.50
R13-4	53.465	25 cm	5,184	40,101	97%	1.61%	54	82	234	0.015	1.13	16.26	112.82	0.95	1.44
R13-7	53.277	25 cm	5,083	39,320	97%	1.62%	55	83	233	0.015	1.11	15.94	112.40	0.95	1.43
R13-9	53.013	25 cm	4,976	38,490	97%	1.63%	57	84	232	0.015	1.10	15.61	112.52	0.96	1.43
R13-13	53.056	25 cm	4,990	38,599	97%	1.63%	57	84	232	0.015	1.11	15.65	112.44	0.96	1.43
C16-12	58.121	1 cm	299	2,309	97%	1.49%	30	58	10	0.013	0.05	0.94	4.46	0.03	0.06
C16-10	58.787	1 cm	312	2,407	97%	1.47%	29	56	10	0.013	0.05	0.98	4.46	0.03	0.06
R13-10	49.517	1 cm	146	1,129	97%	1.74%	89	112	9	0.017	0.05	0.46	4.51	0.04	0.06
Total			29,476	227,781						1	6.00	92.37	575.32	4.64	7.39

ASNC Hot Test Results (1)

- Gamma dose rate to He-3 tubes by SFS
 - 4.6 R/h from all the rodcuts
 - 20 times higher than that from the ACP reference SF of 35 GWD/MTU and 21 yrs cooling
- □ Setup of operating HV
 - 1,680 volt was determined for the operating HV of ASNC
 - This operating HV is well below the gamma pileup region

ASNC Hot Test Results (2)

Measured Singles rate with the declared mass of Cm-244 (from ORIGEN-S)

KAERI

□ Well linear behavior of Singles, Doubles, and Triples rates with the mass of Cm-244.

- "The ASNC is one of the most advanced neutron counter with a capability of Triples rate measurement for the spent fuel." (LANL's estimation)
- Based on performance test, it seems that NDA system is reliable enough to be used for the measurement of ACPF process materials.

Singles/Doubles and Doubles/Triples Ratios

Application to IAEA Authentication and Process Monitoring

- Different ratio values for every neutron counter
- Good Triples rate measurement results of ASNC for spent fuel (No former example)
- S/D and D/T ratios are available for IAEA authentication and process monitoring

D/T and S/D ratios vs. the singles rate of the ASNC for the spent fuel rod-cuts and a ²⁵²Cf neutron source

KAERI's Surveillance System

C/S Plan during Hot Test

Advanced Monitoring System

Other Safeguards R&D for Pyroprocess at KAERI

New Neutron Counter Based on an Annular Tube Type He-3 Detector

72cm x H 68.3cm
Two rings of an annular tube type He-3 detector of 2.5 cm in thickness.
Efficiency : >45 %
Dieaway Time : 70-75 uS
Cavity Error : <4 %

An Active neutron counter for measuring the recovered U and TRU in the Electro-refiner, which will be composed of the Neutron Generator (D-D type, 2x10⁶ n/sec, made by Sodern) and electronic system.

Shielded Glovebox Neutron/Gamma Counter (SGNGC)

Simultaneous neutron coincidence counting and gamma isotopic analysis for small spent fuel samples before pyro-processing

Shielded Scanning Electron Microscopy (SSEM)

Destructive analysis of nuclear materials from pyroprocessing products by Shielded Scanning Electron Microscopy (SSEM)

Laser-induced breakdown spectroscopy (LIBS)

Determining the nature and history of compounds and elements by on-site sampling and analysis using laser induced breakdown spectroscopy (LIBS)

International Cooperation

Safeguardability and PR Study : DUPIC, ACP, ESPF, KAPF
 NMC&A

> NDA Equipment : INVS, DSNC, ASNC, PNAR, SINRD...

> Standard Sources, Data management S/W, Electronics etc.

> Unattended Continuous Monitoring, Intelligent System

Remote monitoring, VPN

Summary

- The lab-scale Fuel Cycle Facility safeguards system in KAERI was successfully designed and established under an international cooperation program.
- Based on performance test, it seems that NDA system is reliable enough to be used for the measurement of the process materials.
- Some R&D for increasing PR and IAEA authentication method will continue.
- Pyroprocess material measurement system, Surveillance system, and near real time accountability system will be integrated into a single safeguards system in the next R&D stage.
- The KAERI will continue to work closely with the IAEA and international partners for the future nuclear fuel cycle
 - Safeguardability and PR evaluation
 - Advanced NDA and monitoring technology development
 - Safeguards system development

khd@kaeri.re.kr